6th Asia-Oceania Group on Earth Observations (AOGEO) Workshop

May 29-31, 2023 Macau, China

The Temporally Consistent Landcover Product using Time Series of Chinese GaoFen-1/6 Satellite Data Bo ZHONG, Longfei HU, Shanlong WU, Aixia YANG

https://aogeo-workshop-2022.casconf.cn/ Email: aogeo_china@aircas.ac.cn

Earth Observations for Asia-Oceania

Content

Global landcover datasets at km scale

Dataset	Resolution	Data used	System	Algorithm
IGBP-DIS	1km	AVHRR	IGBP-17	Unsupervised
UMD	1km	AVHRR	IGBP-17	Supervised decision tree
GLC2000	1km	SPOT	IGBP-22	Method set by regions
MODIS	500m	MODIS	IGBP-17	Supervised decision tree
GlobCover	300m	MERIS	IGBP-22	Unsupervised
MODIS	1km	MODIS	IGBP-17	Supervised

They have been slowly quitting!

Global landcover datasets at 10m scale

Dataset	Data used	Year	Resolution (m)	Overall accuracy	
	I and act TM/ETM+/OUI UI	2000	30	-	
GlobeLand30	1, GF-1	2010	30	83.5%	
		2020	30	85.72%	
		2010	30	80.6%	
FROM_GLC30	Landsat TM/ETM+/OLI	2015	30	77.3%	
		2017	30	72.43%	
FROM_GLC10	Sentinel-2/MSI	2017	10	72.76%	
CIC ECS20	MCD43A4	2015	30	81.4%	
GLC_FC550	Landsat TM/ETM+/OLI	2020	30	-	
ESA_worldcover	Sentinel-1/2	2020	10	74.4%	
Esri Land Cover	Sentinel-2	2020	10	85.96%	
They are getting HOT!					

150° W

What's the gap?

Inconsistency between different datasets spatially

60° W

.900 - 1.00

.250 - .400

.400 - .500

30° J

120° E

150° E

Background

Inconsistency temporally

Background

Why do they leap?

2010-----(100.643,36.612)

2000-----(93.531,37.524)

2010-----(106.514,29.419)

FROM-GLC30

GlobeLand30

FROM-GLC30

Who we can trust? What do we need? □Spatial resolution ≥ 30 m
□Overall accuracy ≥ 85%
□Updating frequency: 1 year
□High temporal consistency

How can we do?

ARD with longer time series.

South Dakota University: L8+S2

CEOS: S2 and more

GA: Data cube

DAIRCAS: Spectrum Earth

DOURS: 16 m GF ARD

16 m GF ARD

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Challenges

Geolocation bias

Atmospheric effect

Zhong* et al. An Improved Aerosol Optical Depth Retrieval Algorithm for Moderate to High Spatial Resolution Optical Remotely Sensed Imagery. Remote Sensing, 2017, 9(6): 555

All the image is atmospheric corrected with full resolution AOD!

Images with bright surface are atmospheric corrected with full resolution AOD!

16 m GF ARD

TOA reflectance

GF ARD

The procedures for producing the GF 16 m ARD

GF 16 m ARD of China from 2013~2022

Advantages: √16m; √ excellent spatial coverage; √ radiometric consistency; √ excellent atmospheric correction; √ higher temporal frequency

Some observations at key date are **missed**

The observations are enough to cover all key dates

S2 without clouds (4)

GF ARD without clouds (26)

GF 16 m ARD with more observations without clouds

Landcover mapping

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Landcover mapping

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Data statistics for mapping the yearly landcover from 2013~2022

	Year	GF-1/WFV (Scene)	Size (TB)	GF-1 ARD (tile)	Size (TB)
	2013	13075	8.9	129367	24
	2014	22707	15.4	209306	39
	2015	18184	12.3	188487	35
	2016	18231	12.4	179564	33
	2017	16558	11.2	160637	30
	2018	16445	11.1	180162	38
	2019	17987	12.1	203822	38
	2020	18707	12.7	201465	38
G	2021	19603	13.3	207979	29
25002	2022	20959	14. 2	222366	31
	Total	182456	123.6	1883155	335

Temporally Consistent Landcover (TCL) Yearly 16 m landcover map of China from 2013~2022

2010----(94.573,33.007)

Case 1: The grassland deterioration with the glacier vanishing

Discoveries

FROM-GLC30

2000-----(94.573,33.007)

上地覆盖分类

Discoveries

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Case 2: The yearly monitoring of big construction

2000-----(103.449,27.593)

FROM-GLC30

GlobeLand30

Case 3: The yearly monitoring of urbanization -- the policy of China's Western developing

Chongqing is one of the most cloudy cities in China

2010-----(106.514,29.419)

Discoveries

Crop type mapping

Compared with the field data from Sinochem Agricultrual company, the OA reaches 95%

Next to do

Funded by MODT, China under GEO speicified Project

International services and collaborative applications of global remote sensing data and products for typical land covers at

10 m scale using domestic satellite data

Next to do

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Data collected for mapping the global landcover from 2020~2022

Sat	Sensor	Year	Scene	Size	Region collected	Total sences required	Rate of progress
GF6	WFV	2020	3072	30TB	USA/Brazail	29633	10%
GF6	WFV	2021	19049	154TB	Globe	35009	54.4%
GF6	WFV	2022	102	1TB	France	30172	1%
GF1	WFV	2020	18707	12. 7TB	China	51382	36.4%
GF1	WFV	2021	53123	36TB	Globe	54091	98%
GF1	WFV	2022	56978	38TB	Globe	56978	100%
	Total		151031	271. 7TB	/	257265	58.7%

UNIVERSIDADE DE MACAU

. Martin Martin Contractor and Contractor and Contractor

Next to do

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Field experiments for sample verification: for better samples and for validation

- **Sampled patches**
- **D** Azerbaijan: 131
- □ Kenya: 1065
- □ Sichuan, China: 68
- □ Hubei, China: 22
- D Fujian, China: 306
- **D** Beijing-Hebei-Inner

Mongolia, China: 392

Conclusion Discussion

6TH ASIA-OCEANIA GROUP ON EARTH OBSERVATIONS (AOGEO) WORKSHOP

Discussions

Conclusions

- ARD does help to improve the
 - landcover mapping accuracy
- Longer time series of ARD are
- better for temporal consistency
 Yearly landcover can captures the subtle variations for knowledge

discovering

Complementary validation

required

Samples and validation for easy
 confused land covers from end
 users are encouraged and better
 to be collected by a public
 platform

THANKS

5th Asia- Oceania Group on Earth Observations (AOGEO) Workshop

https://aogeo-workshop-2022.casconf.cn/ Email: aogeo china@aircas.ac.cn *57